

maintaining the data needed, and c including suggestions for reducing	llection of information is estimated to completing and reviewing the collect g this burden, to Washington Headqu uld be aware that notwithstanding ar OMB control number.	ion of information. Send comments arters Services, Directorate for Information	regarding this burden estimate or mation Operations and Reports	or any other aspect of th , 1215 Jefferson Davis l	is collection of information, Highway, Suite 1204, Arlington	
		2. REPORT TYPE	REPORT TYPE		3. DATES COVERED	
01 OCT 2005		N/A		-		
4. TITLE AND SUBTITLE				5a. CONTRACT NUMBER		
Estimation of Bio-Aerosol Concentration from Elastic Scattering LIDAR				5b. GRANT NUMBER		
Data				5c. PROGRAM ELEMENT NUMBER		
6. AUTHOR(S)				5d. PROJECT NUMBER		
				5e. TASK NUMBER		
				5f. WORK UNIT NUMBER		
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) US Army Dugway Proving Ground				8. PERFORMING ORGANIZATION REPORT NUMBER		
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)				10. SPONSOR/MONITOR'S ACRONYM(S)		
				11. SPONSOR/MONITOR'S REPORT NUMBER(S)		
12. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release, distribution unlimited						
	OTES 51, Proceedings of t Research, 17-20 No					
14. ABSTRACT						
15. SUBJECT TERMS						
16. SECURITY CLASSIFIC		17. LIMITATION OF ABSTRACT	18. NUMBER OF PAGES	19a. NAME OF RESPONSIBLE PERSON		
a. REPORT unclassified	b. ABSTRACT unclassified	c. THIS PAGE unclassified	UU	26	ALSI ONSIBLE FEASON	

Report Documentation Page

Form Approved OMB No. 0704-0188

Estimation of Bio-AerosolConcentration from Elastic Scattering LIDAR Data

November 11, 2003

Allen Q. Howard, Jr., George W. Lemire and Martin S. Marshall

WEST LEST

OUTLINE

- Introduction and Application
- Relevant Theory
- Forward Model
- Noise Considerations
- Inverse Model and Simulations
- Conclusion and Future Development

Introduction

- The West Desert Test Center (WDTC) at DPG uses an elastic backscatter LIDAR system to augment the tracking and characterization of bioaerosol clouds.
- In support of DPG's test mission, hardware and software development for WDTC LIDAR capability is continuing.
- This talk is a progress report on our M&S project to estimate bio-aerosol concentration from LIDAR elastic backscatter data

LIDAR Equation

A convenient form of the Lidar equation predicting the received power (in Watts), from an increment of atmosphere ΔR at range R, is

$$P(\lambda, R) = P_0 \frac{A_0}{R^2} \Delta R \, \beta_{\pi}(\lambda, \mathbf{r}) \, e^{-2 \int_0^R \kappa_e(\lambda) \, dR} \, .$$

Here λ is wave length, A_0 is area of the receiver telescope objective lens, β_{π} is the backscatter coefficient and κ_e is the extinction coefficient.

Backscatter Coefficient

The backscatter coefficient β_{π} (m $^{-1}$ sr $^{-1}$) is

$$\beta_{\pi}(\lambda, \mathbf{r}) = \int_{0}^{\infty} N(a, \mathbf{r}) \, \sigma_{b}(\lambda, a) \, da$$
.

Distribution $N(a, \mathbf{r})$ is normalized such that

$$\rho(\mathbf{r}) = \int_0^\infty N(a, \mathbf{r}) \, da \, .$$

Here $\rho(\mathbf{r})$ is number of particles per unit volume. The Mie backscattering cross-section is

$$\sigma_b(\lambda, a) = \frac{1}{k^2} \left| \frac{1}{2} \sum_{m=1}^{\infty} (2m+1)(-1)^m (a_m - b_m) \right|^2.$$

Extinction Coefficient

The extinction coefficient $\kappa_e(\lambda, \mathbf{r})$ (m⁻¹) is

$$\kappa_e(\lambda, \mathbf{r}) = \rho(\mathbf{r}) \int_0^\infty N_1(a) \, \sigma_e(\lambda, a) \, da$$

where the extinction cross section is

$$\sigma_e(\lambda, a) = \frac{2\pi}{k^2} \Re \left[\sum_{m=1}^{\infty} (2m+1) (a_m + b_m) \right].$$

Inversion of LIDAR Data

To estimate aerosol concentration, transform the measured LIDAR data to obtain

$$S(R,\lambda) = \log(R^2 P(\lambda, R) / (R_0^2 P(\lambda, R_0)).$$

This definition then yields the explicit relation

$$\frac{d}{dR}S(R,\lambda) = \frac{1}{\rho(R)}\frac{d\rho}{dR}(R) - 2\rho(R) < \sigma_e(\lambda) > .$$

This equation is solved for the particle density function $\rho(\mathbf{r})$. Necessary information includes the averaged extinction coefficient $<\sigma_e(\lambda)>$, LIDAR data $S(R,\lambda)$ and a boundary point ρ_f .

Formal Analytic Solution to Aerosol Density

$$\rho(R) = \left[(1/\rho_f + 2 < \sigma_e(\lambda)) > \int_R^{R_f} \frac{dR'}{\tau(R',\lambda)} \right] \tau(R,\lambda)$$

where

$$\tau(R,\lambda) = e^{-[S(R,\lambda) - S(R_f,\lambda)]}$$

Aerosol Scattering

Lidar signals are proportional to Q_{b} and exponentially attenuated proportional to Q_{e}

The Nation's Chemical & Biological Defense Proving Ground

Aerosol Particle Size Distribution

Extinction Cross Section versus Aerosol Mode Radius a_m

The Nation's Chemical & Biological Defense Proving Ground

Particle Density Function

Gaussian Cloud Density $\rho(r)$ PPL

Synthetic Density Data

Synthetic LIDAR Data

Noisy Synthetic LIDAR data $P(R, \lambda)$ for wavelength 1.064 μ . Lower panel shows effect of Kaiser window with side lobe level of 200 dB.

First Stage Inversion

First stage inversion results using two-frequency method.

Second Stage Inversion

Second Stage inversion with S/N = 10 dB noise using equations for q_{nm} and point detector calibration.

Linear Scale Inversion Results

Figure 11: Inversion error analysis as a function of azimuth angle fraction f_{ϕ} with five values of f_R as shown in the legend. Upper left-hand panel is the relative percent error in the extinction coefficient estimate $\alpha^{(1)} = 2 < \sigma_e(\lambda_1) >$. The upper right panel displays the analogous percent relative errors in averaged boundary values q_f . Note the condition number is independent of f_{ϕ} .

Discrete Forward Model

$$q_{nm}^{(i)} = [V_{nm}^i + q_{fm}^{(i)}]\tau_{nm}^i,$$

where

$$\tau_{nm}^{i} = \tau(R_{n}, \phi_{m}, \lambda_{i}),$$

$$\tau(R, \phi, \lambda_{i}) = \exp[S(R, \phi, \lambda_{i}) - S(R_{f}, \phi, \lambda_{i})],$$

$$q_{nm}^{(i)} = q(R_{n}, \phi_{m}, \lambda_{i}),$$

$$q_{fm}^{(i)} = q^{(i)}(R_{f}, \phi_{m}),$$

$$q(R, \phi, \lambda_{i}) = 1/(2 < \sigma_{e}(\lambda) > \rho(R, \phi)),$$

$$V_{nm}^{i} = \int_{P}^{R_{f}} dR' / \tau(R', \phi_{m}, \lambda_{i}).$$

Density Calibration

$$\hat{
ho}_{nm} =
ho_{\mathrm{cal}} q_{\mathrm{cal}}^i / q_{nm}^i$$
 .

Single-Ray, Two-Frequency Algorithm

$$\begin{pmatrix} T_{m,a}^{(2,1)} & v_{m,a}^{(2)} \\ T_{m,b}^{(2,1)} & v_{m,b}^{(2)} \end{pmatrix} \begin{pmatrix} q_{fm}^{(1)} \\ C^{(1,2)} \end{pmatrix} = \begin{pmatrix} v_{m,a}^{(1)} \\ v_{m,b}^{(1)} \end{pmatrix},$$

where

$$T_{m,a}^{(i,j)} = 1/N_a \sum_{n=1}^{N_a} [\tau_{nm}^i - \tau_{nm}^j],$$

$$T_{m,b}^{(i,j)} = 1/N_b \sum_{n=N_b+1}^{N_R} [\tau_{nm}^i - \tau_{nm}^j].$$

where

$$v_{m,a}^{(i)} = 1/N_a \sum_{n=1}^{N_a} V_{nm}^i \tau_{nm}^i,$$

$$v_{m,b}^{(i)} = 1/N_b \sum_{n=N_a+1}^{N_a} V_{nm}^i \tau_{nm}^i,$$

$$N_a + N_b = N_R$$
.

Single-Ray, Three-Frequency Algorithm

$$\begin{pmatrix} T_{m,a}^{(2,1)} & 0 & v_{m,a}^{(2)} & 0 & 0 \\ T_{m,b}^{(2,1)} & 0 & v_{m,b}^{(2)} & 0 & 0 \\ T_{m,a}^{(3,1)} & 0 & 0 & v_{m,a}^{(3)} & 0 \\ T_{m,b}^{(3,1)} & 0 & 0 & v_{m,b}^{(3)} & 0 \\ 0 & T_{m,a}^{(2,3)} & 0 & 0 & v_{m,b}^{(2)} \\ 0 & T_{m,b}^{(2,3)} & 0 & 0 & v_{m,b}^{(2)} \end{pmatrix} \begin{pmatrix} q_{fm}^{(1)} \\ q_{fm}^{(3)} \\ C^{(1,2)} \\ C^{(1,3)} \\ C^{(3,2)} \end{pmatrix} =$$

The Nation's Chemical & Biological Defense Proving Ground

m,b

Conclusion & Future Work

- 2 and 3 frequency elastic scattering algorithms for particle density have been developed.
- At least 2 frequencies are necessary to determine reference arc values ρ_f .
- Ongoing work includes background removal, first stage signal-to-noise enhancement, and system conditioning.

